Tuesday, February 24, 2015

quantum mechanics - Is Angular Momentum truly fundamental?


This may seem like a slightly trite question, but it is one that has long intrigued me.


Since I formally learned classical (Newtonian) mechanics, it has often struck me that angular momentum (and generally rotational dynamics) can be fully derived from normal (linear) momentum and dynamics. Simply by considering circular motion of a point mass and introducing new quantities, it seems one can describe and explain angular momentum fully without any new postulates. In this sense, I am lead to believe only ordinary momentum and dynamics are fundamental to mechanics, with rotational stuff effectively being a corollary.


Then at a later point I learned quantum mechanics. Alright, so orbital angular momentum does not really disturb my picture of the origin/fundamentality, but when we consider the concept of spin, this introduces a problem in this proposed (philosophical) understanding. Spin is apparently intrinsic angular momentum; that is, it applies to a point particle. Something can possess angular momentum that is not actually moving/rotating - a concept that does not exist in classical mechanics! Does this imply that angular momentum is in fact a fundamental quantity, intrinsic to the universe in some sense?



It somewhat bothers me that that fundamental particles such as electrons and quarks can possess their own angular momentum (spin), when otherwise angular momentum/rotational dynamics would fall out quite naturally from normal (linear) mechanics. There are of course some fringe theories that propose that even these so-called fundamental particles are composite, but at the moment physicists widely accept the concept of intrinsic angular momentum. In any case, can this dilemma be resolved, or do we simply have to extend our framework of fundamental quantities?




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...