Wednesday, February 21, 2018

Why are materials that are better at conducting electricity also proportionately better at conducting heat?


It seems like among the electrical conductors there's a relationship between the ability to conduct heat as well as electricity. Eg: Copper is better than aluminum at conducting both electricity and heat, and silver is better yet at both. Is the reason for this known? Are there materials that are good at conducting electricity, but lousy at conducting heat?



Answer



See http://en.wikipedia.org/wiki/Thermal_conductivity In metals, I think it generally has to do with the higher valence band electron mobility, but it gets more interesting elsewhere.




In metals, thermal conductivity approximately tracks electrical conductivity according to the Wiedemann-Franz law, as freely moving valence electrons transfer not only electric current but also heat energy. However, the general correlation between electrical and thermal conductance does not hold for other materials, due to the increased importance of phonon carriers for heat in non-metals. As shown in the table below, highly electrically conductive silver is less thermally conductive than diamond, which is an electrical insulator.



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...