Tuesday, March 27, 2018

electromagnetism - How do we apply Ampère's law for non-planar loops?


How do we apply Ampère's (magnetism) law for non-planar loops?



Its most general form(or you can say the only one I know) is $$ \oint_C \mathbf B\cdot\mathrm d\mathbf l = \mu_0 \iint_S\mathbf J\cdot \mathrm d\mathbf S $$ But what would current enclosed mean in case of non planar loops. I mean infinite amount of curves can contain such loop. As a result while the right-hand side (line integral of B field) would same in each but the integral of current density would be different for each curve (surface or manifold).




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...