Saturday, March 17, 2018

quantum mechanics - What is the use of a Universal-NOT gate?



The universal-NOT gate in quantum computing is an operation which maps every point on the Bloch sphere to its antipodal point (see Buzek et al, Phys. Rev. A 60, R2626–R2629). In general, a single qubit quantum state, |ϕ=α|0+β|1 will be mapped to β|0α|1. This operation is not unitary (in fact it is anti-unitary) and so is not something that can be implemented deterministically on a quantum computer.


Optimal approximations to such gates drew quite a lot of interest about 10 years ago (see for example this Nature paper which presents an experimental realization of an optimal approximation).


What has been puzzling me, and what I cannot find in any of the introductions to these papers, is why one would ever want such a gate. Is it actually useful for anything? Moreover, why would one want an approximation, when there are other representations of SU(2) for which there is a unitary operator which anti-commutes with all of the generators?


This question may seem vague, but I believe it has a concrete answer. There presumable is one or more strong reasons why we might want such an operator, and I am simply not seeing them (or finding them). If anyone could enlighten me, it would be much appreciated.




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...