Thursday, May 3, 2018

general relativity - Symmetry of the Polyakov action?


Let us look at the Polyakov action for a string moving in a spacetime with metric $g_{\mu \nu}(X)$:$$S_P = -{1\over{4\pi \alpha'}} \int d^2 \sigma \sqrt{-\gamma} \gamma^{ab} \partial_a X^\mu \partial_b X^\nu g_{\mu\nu}(X) \tag{1}$$ and suppose there exists a Killing vector $k_\mu$ in spacetime satisfying Killing's equation $$\nabla_\mu k_\nu + \nabla_\nu k_\mu = 0.\tag{2}$$ Does this lead to a symmetry of the Polyakov action?




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...