Wednesday, May 9, 2018

waves - Simple Quantum Mechanics question about the Free particle, (part1)


I am reading Introduction to Quantum Mechanics by David Griffiths and I am in Ch2 page 59. He starts out writing the time dependent Schrödinger equation and the solution for $\psi(x,t)$ for the free particle,



$$\psi(x,t) = A e^{ik(x-(\hbar k/2m)t)} + B e^{-ik(x + (\hbar k/2m)t)}$$



Then he goes and says the following,




Now, any function of $x$ and $t$ that depends on these variables in the special combination $x \pm vt$ (for some constant $v$) represents a wave of fixed profile, traveling in the $\pm x$-direction, at speed $v$.



What does this sentence mean?



Answer



It means there are many possible shapes for waves, not just pure sine waves.


For example,


$$\psi(x,t) = A\textrm{e}^{-k^2(x-vt)^2}$$


is a possible wavefunction. It represents a Gaussian wave packet that travels down the x-axis in the positive direction at speed $v$. The important part is that you can make the substitution $u = x-vt$ into $\psi$ and get a function of a single variable $u$.


So, start with any function $f$ of a single variable $u$. Now make the substitution $u = x - vt$. $f$ has now become a wave that travels down the x-axis at speed $v$ with some funky shape.


The mathematically-important thing is that such functions can be represented as a superposition of sinusoidals of continuously-varying frequencies all traveling in tandem down the x-axis (by "traveling" I mean "have phase velocity"). The sinusoidals that go with a given $f$ are found through fourier analysis. This is important because the sinusoidals are the eigenfunctions of the Hamiltonian for a free particle.



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...