Saturday, November 23, 2019

special relativity - Rindler motion constant acceleration proper time


I have problem to calculate the proper time for Rindler coordinates: the coordinates in Minkowski space with constant acceleration are given by:$$ \begin{alignat}{7} t' &~=~ \frac{c}{g} \, && \sinh{\left(\frac{g}{c\tau}\right)} \\ x' &~=~ \frac{c^2}{g} \, && \cosh{\left(\frac{g}{c\tau}\right)} \end{alignat} $$


The proper time is $$ \tau_{\text{p}}~=~\int{\sqrt{1 - \frac{v^2 \left(t' \right)}{c^2}}}\, \mathrm{d}t' \,,$$with$$ \begin{alignat}{7} t' & ~=~ \frac{c}{g} \, && \sinh{\left(\frac{g}{c\tau}\right)} \\ \mathrm{d}t' & ~=~ && \cosh{\left(\frac{g}{c\tau}\right)} \,. \end{alignat} $$


How can I calculate $v \left(t' \right)$?





No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...