Thursday, November 24, 2016

newtonian mechanics - Why is the work done by a rocket engine greater at higher speeds?



From this comment by orlp:




If I strap a rocket booster to a rocket in space and fire it for one second, then the work provided is much higher when the rocket is flying fast compared to when the rocket was stationary. In both cases the rocket fires for the same duration but in the former case the rocket travels a much greater distance during this period. What gives?




Answer



The key point of this question is that it intuitively seems like conservation of energy is not working right. A rocket is powered by a chemical reaction that releases chemical energy at a constant rate. So how can a constant rate of energy release lead to a greater increase in KE when going fast?


To understand this it is useful to consider a “toy model” rocket that operates on the same principles, but is easier to analyze. Specifically, let’s consider a 10 kg ball (rocket) and a 1 kg ball (exhaust) which is attached to a massless spring (fuel).


Suppose this spring has enough energy stored that when the rocket is initially at rest it can propel it to 1 m/s, and by conservation of momentum the exhaust is propelled to -10 m/s. Conversely, if the rocket starts at 5 m/s then after “burning” the fuel the rocket is propelled to 6 m/s and the exhaust moves at -5 m/s.


So now let’s check energy. In the first case the KE of the rocket increased from 0 J to 5 J, while in the second case it increased from 125 J to 180 J. The spring stores the same amount of energy in both cases, so why does the KE increase by 5 J at the low speed and by 55 J at the high speed?


Notice that we forgot to calculate the energy that went into the exhaust. This is the pivotal mistake of most such analyses. In the first case the KE of the exhaust increased from 0 J to 50 J, while in the second case the KE was 12.5 J before and after. So in both cases the total change in KE (both the rocket and the exhaust) was 55 J.


At low speeds most of the fuel’s energy is “wasted” in the KE of the exhaust. At higher speeds more goes into the rocket and less into the exhaust. For a real rocket, the same thing happens on a continuous basis. Both energy and momentum are conserved, and in fact more power is delivered to the vehicle as the speed increases under constant thrust.



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...