I'm trying to find the Noether charge for the symmetry
x→x+f(x)
This transformation should leave the action invariant, so
dS=S(x+f(x),…)−S(x)=0=∫dt L(x+f(x),˙x+˙f,…,t)−L(x,˙x,…,t)
Using f(x+ϵ)−f(x)≈ϵdfdx
dS=∫dt ∂L∂xf+∂L∂˙x˙f+∂L∂¨x¨f+…
Writing the second term as a total derivative dS=∫dt ∂L∂xf+ddt[∂L∂˙xf]−fddt(∂L∂˙x)+∂L∂¨x¨f+…=∂L∂˙xf|T0+∫dt ∂L∂xf−fddt(∂L∂˙x)+∂L∂¨x¨f+…
For the higher order terms we can do the same ∂L∂¨x¨f=ddt(∂L∂¨x˙f)−˙fddt(∂L∂¨x)=ddt(∂L∂¨x˙f)−ddt(fddt(∂L∂¨x))+fd2dt2(∂Ld¨x)
So now the integral becomes dS=N∑n=0∂L∂x(n+1)f(n)|T0+∫dt f[N∑n=0(−1)ndndtn(∂L∂x(n))]−ddt(fddt(∂L∂¨x))+…=0
Where the sum under the integral represents the Euler-Lagrange equations for the unperturbed action. I am kind of expecting the boxed terms to vanish as well, leaving only the first term. Did I do it right, what steps am I missing?
No comments:
Post a Comment