Wednesday, September 5, 2018

quantum field theory - Proof of Spin-statistics theorem




Is this proof of spin-statistics theorem correct?


http://bolvan.ph.utexas.edu/~vadim/classes/2008f.homeworks/spinstat.pdf


This proof is probably a simplified version of Weinberg's proof. What is the difference?


What is the physical meaning of $J^{+}$ and $J^{-}$ non-hermitian operators?


I'm especially interested in the beginnig of proof of second lemma. How to get this: \begin{eqnarray} F_{AB}(-p^{\mu}) = F_{AB}(p^{\mu})\times (-1)^{2j_{A}^{+}} (-1)^{2j_{B}^{+}} \\ \nonumber H_{AB}(-p^{\mu}) = H_{AB}(p^{\mu})\times (-1)^{2j_{A}^{+}} (-1)^{2j_{B}^{+}} \end{eqnarray}


Also why under CPT field transform as \begin{eqnarray} \phi_{A}(x)\rightarrow \phi_{A}^{\dagger}(-x) \times (-1)^{2J_{A}^{-}} \\ \nonumber \phi_{A}^{\dagger}(x) \rightarrow \phi_{A}(-x) \times (-1)^{2J_{A}^{+}} \end{eqnarray} conjugation is from charge reversal, - from space inversion and time reversal. What about $(-1)^{2J_{A}^{-}}$?


Where can I find similar proofs?




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...