Is this proof of spin-statistics theorem correct?
http://bolvan.ph.utexas.edu/~vadim/classes/2008f.homeworks/spinstat.pdf
This proof is probably a simplified version of Weinberg's proof. What is the difference?
What is the physical meaning of $J^{+}$ and $J^{-}$ non-hermitian operators?
I'm especially interested in the beginnig of proof of second lemma. How to get this: \begin{eqnarray} F_{AB}(-p^{\mu}) = F_{AB}(p^{\mu})\times (-1)^{2j_{A}^{+}} (-1)^{2j_{B}^{+}} \\ \nonumber H_{AB}(-p^{\mu}) = H_{AB}(p^{\mu})\times (-1)^{2j_{A}^{+}} (-1)^{2j_{B}^{+}} \end{eqnarray}
Also why under CPT field transform as \begin{eqnarray} \phi_{A}(x)\rightarrow \phi_{A}^{\dagger}(-x) \times (-1)^{2J_{A}^{-}} \\ \nonumber \phi_{A}^{\dagger}(x) \rightarrow \phi_{A}(-x) \times (-1)^{2J_{A}^{+}} \end{eqnarray} conjugation is from charge reversal, - from space inversion and time reversal. What about $(-1)^{2J_{A}^{-}}$?
Where can I find similar proofs?
No comments:
Post a Comment