Create all the numbers from 1 to 100 using the numbers 1,3,3, and 7.
You can only use each number once, except for the 3, of which you have two.
You can use addition (x+y), subtraction (x−y), division (\frac{x}{y}), multiplication (x\times y), exponentiation (x^y), roots (y\sqrt x), factorials (x!) and ceiling and floor (\lceil x\rceil,\lfloor y\rfloor).
You can combine numbers like 1 and 7 to 17 etc.
Use of any types of brackets are also allowed.
Good luck!
Answer
1 number missing. I give up
0 = 7-3-3-1
1 = 7 \times 1 - 3 - 3
2 = 7 + 1 - 3 - 3
3 = \frac{7 - 1 + 3}{3}
4 = \sqrt{17-\frac{3}{3}}
5 = 3 \times (3 + 1) - 7
6 = 7 - 1 + 3 - 3
7 = 7 \times 1 - 3 + 3
8 = 7 + 1 - 3 + 3
9 = 13 + 3 - 7
10 = 3^3 - 17
11 = 17 - 3 - 3
12 = 3 \times (7 - 3) \times 1
13 = 3 \times (7 - 3) + 1
14 = 7 \times (1 + \frac{3}{3})
15 = 3 \times (7 - 3 + 1)
16 = 17 - \frac{3}{3}
17 = 17 - 3 + 3
18 = 17 + \frac{3}{3}
19 = 7 \times 3 + 1 - 3
20 = 3^3 - 7 \times 1
21 = 3^3 - 7 + 1
22 = (7-3)! - 3 + 1
23 = 7 \times 3 + 3 - 1
24 = \frac{73 - 1}{3}
25 = 33 - 7 - 1
26 = 33 - 7 \times 1
27 = 33 - 7 + 1
28 = 3 \times 7 + 3! + 1
29 = 3! \times 3! - 7 \times 1
30 = 37 - 3! - 1
31 = 37 - 3! \times 1
32 = 37 - 3! + 1
33 = 37 - 3 - 1
34 = 37 - 3 \times 1
35 = 37 - 3 + 1
36 = (7-1) \times (3+3)
37 = 3! \times (3! - 1) + 7
38 = 3! \times 7 - 3 - 1
39 = 3! \times 7 - 3 \times 1
40 = 3! \times 7 - 3 + 1
41 = 37 + 3 + 1
42 = 37 + 3! - 1
43 = 37 + 3! \times 1
44 = 37 + 3! + 1
45 = 3! \times 7 + 3 \times 1
46 = 3! \times 7 + 3 + 1
47 = 3! \times 7 + 3! - 1
48 = 3! \times 7 + 3! \times 1
49 = 7 \times (3+3+1)
50 = (7+3) \times (3!-1)
51 = 17 \times (3! - 3)
52 = 13 \times (7-3)
53 = \lfloor\sqrt{7^3}\rfloor \times 3 - 1
54 = 17 + 3^3
55 = 7 \times 3 + (3+1)!
56 = (3\times 3 - 1) \times 7
57 = 17 \times 3 + 3!
58 = \lfloor\frac{7^3}{3!}\rfloor + 1
59 = 3! \times (7+3) - 1
60 = 3! \times (7+3) \times 1
61 = 3! \times (7+3) + 1
62 = 7\times 3^3 - 1
63 = 7\times 3^3 \times 1
64 = 7\times 3^3 + 1
65 = (7+3!) \times (3!-1)
66 = 7\times 3! + (3+1)!
67 = (3+1)^3 + \lceil\sqrt{7}\rceil = 64 + 3
68 = \lfloor\frac{7^3}{3!-1}\rfloor
69 = \lceil\frac{7^3}{3!-1}\rceil
70 = (7 + 3) \times (3! + 1)
71 = 71 -3 + 3
72 = (3! + 3!) \times (7-1)
73 = 73 + \lfloor\frac{1}{3}\rfloor
74 = 3^{3+1} - 7
75 = 73 + 3 - 1
76 = 73 + 3 \times 1
77 = 73 + 3 + 1
78 = 3! \times (7 + 3!) \times 1
79 = 3! \times (7 + 3!) + 1
80 = 3^{7-3} - 1
81 = 3^{7-3} \times 1
82 = 3^{7-3} + 1
83 = 7 \times (3! + 3!) - 1
84 = 7 \times (3! + 3!) \times 1
85 = 7 \times (3! + 3!) + 1
86 = 73 + 13
87 = \lceil{\sqrt{\sqrt{13^7}}}\rceil - 3 = \lceil{89.00222..}\rceil - 3
88 = 3^{3+1} + 7
89 = 13 \times 7 - \lceil\sqrt{3}\rceil
90 = 13 \times 7 - \lfloor\sqrt{3}\rfloor
91 = (3!+3!+1) \times 7
92 = 13 \times 7 + \lfloor\sqrt{3}\lfloor
93 = 13 \times 7 + \lceil\sqrt{3}\lceil
94 = 13 \times 7 + 3
95 =
96 = 17 \times 3! - 3!
97 = 73 + (3+1)!
98 = 71 + 3^3
99 = (3! - 1)! - 3\times 7
100 = 31 \times 3 + 7
Bonus:
If we allow
log
functions we can generate every number like this:
x = \log_{\frac{1}{\lfloor\sqrt7\rfloor}}\left({\log_3\underbrace{\sqrt{\sqrt{\dots\sqrt{3\,}\,}\,}}_\text{x square roots}}\right)
This is equivalent to
x = \log_{\frac12}\left({\log_3{3^{\frac{1}{2^x}}}}\right)
Going further:
x = \log_{\frac12}\left({\frac{1}{2^x}}\right)