Tuesday, December 31, 2019

calculation puzzle - Create all numbers from 1-100 by using 1,3,3,7


Create all the numbers from 1 to 100 using the numbers 1,3,3, and 7.


You can only use each number once, except for the 3, of which you have two.
You can use addition (x+y), subtraction (xy), division (xy), multiplication (x×y), exponentiation (xy), roots (yx), factorials (x!) and ceiling and floor (x,y).

You can combine numbers like 1 and 7 to 17 etc.
Use of any types of brackets are also allowed.
Good luck!



Answer



1 number missing. I give up



0=7331
1=7×133
2=7+133
3=71+33

4=1733
5=3×(3+1)7
6=71+33
7=7×13+3
8=7+13+3
9=13+37
10=3317
11=1733
12=3×(73)×1
13=3×(73)+1

14=7×(1+33)
15=3×(73+1)
16=1733
17=173+3
18=17+33
19=7×3+13
20=337×1
21=337+1
22=(73)!3+1
23=7×3+31

24=7313
25=3371
26=337×1
27=337+1
28=3×7+3!+1
29=3!×3!7×1
30=373!1
31=373!×1
32=373!+1
33=3731

34=373×1
35=373+1
36=(71)×(3+3)
37=3!×(3!1)+7
38=3!×731
39=3!×73×1
40=3!×73+1
41=37+3+1
42=37+3!1
43=37+3!×1

44=37+3!+1
45=3!×7+3×1
46=3!×7+3+1
47=3!×7+3!1
48=3!×7+3!×1
49=7×(3+3+1)
50=(7+3)×(3!1)
51=17×(3!3)
52=13×(73)
53=73×31

54=17+33
55=7×3+(3+1)!
56=(3×31)×7
57=17×3+3!
58=733!+1
59=3!×(7+3)1
60=3!×(7+3)×1
61=3!×(7+3)+1
62=7×331
63=7×33×1

64=7×33+1
65=(7+3!)×(3!1)
66=7×3!+(3+1)!
67=(3+1)3+7=64+3
68=733!1
69=733!1
70=(7+3)×(3!+1)
71=713+3
72=(3!+3!)×(71)
73=73+13

74=33+17
75=73+31
76=73+3×1
77=73+3+1
78=3!×(7+3!)×1
79=3!×(7+3!)+1
80=3731
81=373×1
82=373+1
83=7×(3!+3!)1

84=7×(3!+3!)×1
85=7×(3!+3!)+1
86=73+13
87=1373=89.00222..3
88=33+1+7
89=13×73
90=13×73
91=(3!+3!+1)×7
92=13×7+3
93=13×7+3

94=13×7+3
95=
96=17×3!3!
97=73+(3+1)!
98=71+33
99=(3!1)!3×7
100=31×3+7



Bonus:




If we allow log functions we can generate every number like this:
x=log17(log33x square roots)
This is equivalent to
x=log12(log3312x)
Going further:
x=log12(12x)



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...