Create all the numbers from 1 to 100 using the numbers 1,3,3, and 7.
You can only use each number once, except for the 3, of which you have two.
You can use addition (x+y), subtraction (x−y), division (xy), multiplication (x×y), exponentiation (xy), roots (y√x), factorials (x!) and ceiling and floor (⌈x⌉,⌊y⌋).
You can combine numbers like 1 and 7 to 17 etc.
Use of any types of brackets are also allowed.
Good luck!
Answer
1 number missing. I give up
0=7−3−3−1
1=7×1−3−3
2=7+1−3−3
3=7−1+33
4=√17−33
5=3×(3+1)−7
6=7−1+3−3
7=7×1−3+3
8=7+1−3+3
9=13+3−7
10=33−17
11=17−3−3
12=3×(7−3)×1
13=3×(7−3)+1
14=7×(1+33)
15=3×(7−3+1)
16=17−33
17=17−3+3
18=17+33
19=7×3+1−3
20=33−7×1
21=33−7+1
22=(7−3)!−3+1
23=7×3+3−1
24=73−13
25=33−7−1
26=33−7×1
27=33−7+1
28=3×7+3!+1
29=3!×3!−7×1
30=37−3!−1
31=37−3!×1
32=37−3!+1
33=37−3−1
34=37−3×1
35=37−3+1
36=(7−1)×(3+3)
37=3!×(3!−1)+7
38=3!×7−3−1
39=3!×7−3×1
40=3!×7−3+1
41=37+3+1
42=37+3!−1
43=37+3!×1
44=37+3!+1
45=3!×7+3×1
46=3!×7+3+1
47=3!×7+3!−1
48=3!×7+3!×1
49=7×(3+3+1)
50=(7+3)×(3!−1)
51=17×(3!−3)
52=13×(7−3)
53=⌊√73⌋×3−1
54=17+33
55=7×3+(3+1)!
56=(3×3−1)×7
57=17×3+3!
58=⌊733!⌋+1
59=3!×(7+3)−1
60=3!×(7+3)×1
61=3!×(7+3)+1
62=7×33−1
63=7×33×1
64=7×33+1
65=(7+3!)×(3!−1)
66=7×3!+(3+1)!
67=(3+1)3+⌈√7⌉=64+3
68=⌊733!−1⌋
69=⌈733!−1⌉
70=(7+3)×(3!+1)
71=71−3+3
72=(3!+3!)×(7−1)
73=73+⌊13⌋
74=33+1−7
75=73+3−1
76=73+3×1
77=73+3+1
78=3!×(7+3!)×1
79=3!×(7+3!)+1
80=37−3−1
81=37−3×1
82=37−3+1
83=7×(3!+3!)−1
84=7×(3!+3!)×1
85=7×(3!+3!)+1
86=73+13
87=⌈√√137⌉−3=⌈89.00222..⌉−3
88=33+1+7
89=13×7−⌈√3⌉
90=13×7−⌊√3⌋
91=(3!+3!+1)×7
92=13×7+⌊√3⌊
93=13×7+⌈√3⌈
94=13×7+3
95=
96=17×3!−3!
97=73+(3+1)!
98=71+33
99=(3!−1)!−3×7
100=31×3+7
Bonus:
If we allow
log
functions we can generate every number like this:
x=log1⌊√7⌋(log3√√…√3⏟x square roots)
This is equivalent to
x=log12(log3312x)
Going further:
x=log12(12x)
No comments:
Post a Comment