Sunday, October 1, 2017

quantum mechanics - Bremsstrahlung vs energy conservation


From Wikipedia:



Bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into a photon because energy is conserved.




Isn't energy conserved for the moving particle in an electrostatic potential, $E_{kinetic} + E_{potential} = \frac{mv^2}{2}+\frac{kqQ}{r}$? If so, where does the extra energy for photons come from?


Why don't electrons in atoms radiate away their energy?




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...