I am looking at the start of the consider how to calculate the entropy of a monatomic ideal gas.
We need to determine the number of microstates in E≤H(Γ)≤E+Δ. The volume of the this region is ω(E,V,N). The Hamiltonian has the form
H(Γ)=3N∑i=1p2i2m
where the position coordinates restricted to box with volume V. The equation H(Γ)=E describes the hypersphere with radius √2mE. Thus
ω(E,V,N)=VNS3N(√2mE)Δ
How has this last formula been found?
Answer
The number Ω of microstates accessible to the particle system is defined as : Ω=ω(E)Δ where ω(E) is the density of state. To determine this guy, you need first to calculate the number χ(E) of µ-states corresponding to an energy inferior or equal to E.
Let us call the associated phase space region Σ[0,E]≡{Γ,0⩽.
Then, it basically reads : \chi(E)=\frac{1}{h^{3N}}\int_{\Sigma_{[0,E]}}\mathrm{d}\Gamma \quad \text{with} \quad \mathrm{d}\Gamma=\prod^N_{i=1}\mathrm{d}\textbf{q}_i\,\mathrm{d}\textbf{p}_i h^{3N} is here the element phase space volume corresponding to one µ-state. It is quite straighforward to compute : \chi(E)=\frac{1}{h^{3N}}\left[\prod^N_{i=1}\int_{\Sigma_{[E,E+\Delta]}}\mathrm{d}\textbf{q}_i\right]\left[\prod^N_{i=1}\int_{\Sigma_{[0,E]}}\mathrm{d}\textbf{p}_i\right]=\frac{1}{h^{3N}}\,V^N\times V_{3N}(\sqrt{2mE}) where V_{3N}(\text{r}) is the volume of a 3N dimension hyperball with a \text{r} radius, and \Sigma_{[E,E+\Delta]} is the phase space region \lbrace\Gamma,E\leqslant\mathcal{H}(\Gamma)\leqslant E+\Delta \rbrace.
For a 3D gas, we have for a given particle i : \int_{\Sigma_{[E,E+\Delta]}}\mathrm{d}q_{i,x}\mathrm{d}q_{i,y}\mathrm{d}q_{i,z}=V\quad\text{volume of the gas} and for N particles : \int_{\Sigma_{[0,E]}}\prod_{i=1}^N\mathrm{d}p_{i,x}\mathrm{d}p_{i,y}\mathrm{d}p_{i,z}=V_{3N}(\sqrt{2mE}) by integrating over all possible direction of the total momentum \sum_i\textbf{p}_i and all magnitudes below the energy shell \lbrace\Gamma,\mathcal{H}(\Gamma)=E \rbrace so that : \left|\sum_i\textbf{p}_i\right|=\sqrt{\sum_i\textbf{p}_i^2}=\sqrt{2mE}\quad\text{with}\quad E=\frac{1}{2m}\sum_i\textbf{p}_i^2 Since all direction are possible, the integration is performed over a 3N-ball.
Then, it follows : \omega(E)=\frac{\mathrm{d}\chi}{\mathrm{d}E}(E)=\frac{1}{h^{3N}}\,V^N\times S_{3N}(\sqrt{2mE})
No comments:
Post a Comment