The standard Lorentz transformation or boost with velocity $u$ is given by $$\left(\begin{matrix} ct \\ x \\ y \\ z \end{matrix}\right) = \left(\begin{matrix} \gamma & \gamma u/c & 0 & 0 \\ \gamma u/c & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}\right) \, \left(\begin{matrix} ct^\prime \\ x^\prime \\ y^\prime \\ z^\prime \end{matrix}\right) = L_u \,\left(\begin{matrix} ct^\prime \\ x^\prime \\ y^\prime \\ z^\prime \end{matrix}\right)$$ where $\gamma = \gamma(u) = 1/\sqrt{1-u^2/c^2}$. In the standard Lorentz transformation, it is assumed that the $x$ and $x^\prime$ axes coincide, and that $O^\prime$ is moving directly away from $O$.
If we drop the first condition, allowing the inertial frames to have arbitrary orientations, then "we must combine [the standard Lorentz transformation] with an orthogonal transformation of the $x$, $y$, $z$ coordinates and an orthogonal transformation of the $x^\prime$, $y^\prime$, $z^\prime$ coordinates. The result is $$\left(\begin{matrix} ct \\ x \\ y \\ z \end{matrix}\right) = L \,\left(\begin{matrix} ct^\prime \\ x^\prime \\ y^\prime \\ z^\prime \end{matrix}\right)$$ with $$L = \left(\begin{matrix} 1 & 0 \\ 0 & H \end{matrix}\right)\, L_u \,\left(\begin{matrix} 1 & 0 \\ 0 & K^\textrm{t} \end{matrix}\right)$$ where $H$ and $K$ are $3 \times 3$ proper orthogonal matrices, $L_u$ is the standard Lorentz transformation matrix with velocity $u$, for some $u < c$, [and 't' denotes matrix transpose]."
I have two questions:
- Why are two orthogonal transformations, for both the unprimed and primed spatial coordinates, necessary? That is, why isn't one orthogonal transformation sufficient to align the axes of the inertial frames?
- Why does the first orthogonal transformation use the transposed orthogonal matrix $K^\textrm{t}$?
Answer
It's actually very simple. The general Lorentz transformation can be rewritten as
$$\left(\begin{matrix} 1 & 0 \\ 0 & H^\textrm{t} \end{matrix}\right)\,\left(\begin{matrix} ct \\ x \\ y \\ z \end{matrix}\right) = L_u \,\left(\begin{matrix} 1 & 0 \\ 0 & K^\textrm{t} \end{matrix}\right) \,\left(\begin{matrix} ct^\prime \\ x^\prime \\ y^\prime \\ z^\prime \end{matrix}\right)\,.$$ This corresponds to aligning the $x$ and $x^\prime$ axes with the direction of the relative velocity, and then applying the standard Lorentz transformation.
No comments:
Post a Comment