Thursday, November 8, 2018

Can the connectivity of space change in string theory?



A flop transition changes the second homotopy group of a Calabi-Yau compactifation, but not the fundamental group or the number of connected components. Can the number of connected spatial components change in string theory? Can a part of space pinch off never to interact with the rest of space?




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...