Monday, December 9, 2019

calculation puzzle - Expressing numbers using 0, 1, 2, 3, and 4


The least number that cannot be written using the numbers 0, 1, 2, and 3, each exactly once, and any combination of standard arithmetic operations (including factorials) is 41. What is the least such number if the numbers 0, 1, 2, 3, and 4 are allowed?


Allowed operations are addition, subtraction, multiplication, division, factorials, exponents, square roots, decimal points, intermediate non-integer results, concatenation, recurring decimals, and any amount of parenthesis and brackets. No other digits besides one of each of 0, 1, 2, 3, and 4.



Answer



For a start, here is a list of composing all the numbers up to



100



(I avoided using concatenation and decimal points, as based on the conversation in the comments there is some ambiguity if (or when) they are allowed or not.)




$0=0\times(1+2+3+4)$
$1=1^{0+2+3+4}$
$2=0\times(1+3+4)+2$
$3=0\times(1+2+4)+3$
$4=0\times(1+2+3)+4$
$5=0\times(2+3)+4+1$
$6=0\times(1+3)+4+2$
$7=0\times(1+2)+4+3$
$8=0\times2+4+3+1$
$9=0\times1+4+3+2$

$10=0+1+2+3+4$
$11=0\times2+4+3!+1$
$12=0\times1+4+3!+2$
$13=0+2+4+3!+1$
$14=2\times(0!+1)+4+3!$
$15=0+1+2+3\times4$
$16=0\times2+4\times(3+1)$
$17=4^2+0\times3+1$
$18=4^2+0+3-1$
$19=4^2+0+3\times1$

$20=4^2+0+3+1$
$21=4\times(3+2)+0+1$
$22=4\times(3+2)+0+1$
$23=4\times3\times2+0-1$
$24=4\times3\times2+0\times1$
$25=4\times3\times2+0+1$
$26=4!+3+0\times2-1$
$27=4!+3+0\times2\times1$
$28=4!+3+0\times2+1$
$29=4!+3+0\times1+2$

$30=4!+3+0+1+2$
$31=4!+3!+2\times0+1$
$32=4!+3!+1\times0+2$
$33=4!+3!+0+1+2$
$34=4!+3!+0!+1+2$
$35=3!\times(4+2)+0-1$
$36=3!\times(4+2)+0\times1$
$37=3!\times(4+2)+0+1$
$38=3!\times(4+2)+0!+1$
$39=(3!-0!)\times4\times2-1$

$40=(3!-0!)\times4\times2\times1$
$41=(3!-0!)\times4\times2+1$
$42=(3!+0!)\times(4+2)\times1$
$43=(3!+0!)\times(4+2)+1$
$44=4\times(3!+(2+1)!-0!)$
$45=3\times(4^2-1)+0$
$46=3\times(4^2-1)+0!$
$47=3\times4^2-1+0$
$48=3\times4^2+1\times0$
$49=3\times4^2+1+0$

$50=3\times4^2+1+0!$
$51=3\times(4^2+1)+0$
$52=3\times(4^2+1)+0!$
$53=2\times(4!+3)+0-1$
$54=2\times(4!+3)+0\times1$
$55=2\times(4!+3)+0+1$
$56=2\times(4!+3)+0!+1$
$57=2\times(4!+3+0!)+1$
$58=2\times(4!+3+0!+1)$
$59=2\times(4!+3!)+0-1$

$60=2\times(4!+3!)+0\times1$
$61=2\times(4!+3!)+0+1$
$62=2\times(4!+3!)+0!+1$
$63=2\times(4!+3!+0!)+1$
$64=2\times(4!+3!+0!+1)$
$65=4^3+1^2+0$
$66=4^3+2^1+0$
$67=4^3+2+1+0$
$68=4^3+2+1+0!$
$69=4!\times3-2-1+0$

$70=4!\times3-2+1\times0$
$71=4!\times3-2+1+0$
$72=4!\times3+2\times1\times0$
$73=4!\times3+2\times0+1$
$74=4!\times3+2+1\times0$
$75=4!\times3+2+1+0$
$76=(4!+1)\times3+2-0!$
$77=(4!+1)\times3+2+0$
$78=(4!+1)\times3+2+0!$
$79=(4+1)!\times\frac23-0!$

$80=(4+1)!\times\frac23+0$
$81=(4+1)!\times\frac23+0!$
$82=3^4+2-1+0$
$83=3^4+2+1\times0$
$84=3^4+2+1+0$
$85=3^4+2+1+0!$
$86=3^4+(2+1)!-0!$
$87=3^4+(2+1)!+0$
$88=3^4+(2+1)!+0!$
$89=(4!-2)\times(3+1)+0!$

$90=(3+2)!\times(0!-\frac14)$
$91=(4!+(1+2)!)\times3+0!$
$92=(4!-1)\times(3+2-0!)$
$93=3\times(2^{4+1}-0!)$
$94=4!\times(3+0!)-1\times2$
$95=4!\times(3+0!)-1^2$
$96=4!\times(3+0!)\times1^2$
$97=4!\times(3+0!)+1^2$
$98=(4!+1)\times(3+0!)-2$
$99=3\times(2^{4+1}+0!)$

$100=(3!+4)^{2^{1^0}}$



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...